A maximum likelihood approach to correlation dimension and entropy estimation
نویسندگان
چکیده
منابع مشابه
Regularized Maximum Likelihood for Intrinsic Dimension Estimation
We propose a new method for estimating the intrinsic dimension of a dataset by applying the principle of regularized maximum likelihood to the distances between close neighbors. We propose a regularization scheme which is motivated by divergence minimization principles. We derive the estimator by a Poisson process approximation, argue about its convergence properties and apply it to a number of...
متن کاملMaximum Likelihood Estimation of Intrinsic Dimension
We propose a new method for estimating intrinsic dimension of a dataset derived by applying the principle of maximum likelihood to the distances between close neighbors. We derive the estimator by a Poisson process approximation, assess its bias and variance theoretically and by simulations, and apply it to a number of simulated and real datasets. We also show it has the best overall performanc...
متن کاملBayesian approach to maximum likelihood estimation
Suppose that we start with a “prior” probability distribution g(θ) on parameters, which represents our knowledge (such as the frequencies of the 4 different nucleotides in the DNA of a given species) before running an experiment. Next, we run an experiment (e.g., sequencing a particular segment of DNA), and observe an outcome x. Bayes’s rule tells us that P (θ|x) = P (x|θ)g(θ) P (x) . In the ra...
متن کاملthe aesthetic dimension of howard barkers art: a frankfurtian approach to scenes from an execution and no end of blame
رابطه ی میانِ هنر و شرایطِ اجتماعیِ زایش آن همواره در طولِ تاریخ دغدغه ی ذهنی و دل مشغولیِ اساسیِ منتقدان و نیز هنرمندان بوده است. از آنجا که هنر در قفس آهنیِ زندگیِ اجتماعی محبوس است، گسترش وابستگیِ آن با نهاد ها و اصولِ اجتماعی پیرامون، صرفِ نظر از هم سو بودن و یا غیرِ هم سو بودنِ آن نهاد ها، امری اجتناب ناپذیر به نظر می رسد. با این وجود پدیدار گشتنِ چنین مباحثِ حائز اهمییتی در میان منتقدین، با ظهورِ مکتب ما...
A Maximum Likelihood Approach to Density Estimation with Semidefinite Programming
Density estimation plays an important and fundamental role in pattern recognition, machine learning, and statistics. In this article, we develop a parametric approach to univariate (or low-dimensional) density estimation based on semidefinite programming (SDP). Our density model is expressed as the product of a nonnegative polynomial and a base density such as normal distribution, exponential d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of Mathematical Biology
سال: 1992
ISSN: 0092-8240
DOI: 10.1016/s0092-8240(05)80175-2